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Introduction. At White Sands Missile Range we are interested in detecting
manmade objects (targets) usually against a natural background such as the
sky or a mountain. A widely used method of detecting a target is to find
the edges in a picture using some operator whose value is high when there
are many changes in gray levels. An object which contrasts with the back-
ground because of step and ramp edges gives rise to high values of the
edge detector. After the detection of the step and ramp edge points in a
scene, the problem of detecting a target is reduced to that of determining
which of the points classified as edges belong to the target. If -the
target is the object of greatest contrast then its location can be found
by simply thresholding for the highest value of the edge detector.
However, if the target is not the object of highest contrast other methods
must be used to detect a target in a scene. Thus, we must use properties
of the target that are not shared by other edge points in a scene. The
targets that we track, planes and rockets, have as one of their main
geometric features several points of very high curvature. Thus, to detect
edges which belong to a target a reasonable procedure would be to look for
edge points which come from objects which have high curvature. Another
property which makes manmade objects different from natural objects is the
strong interior edges (extremal edges) which are present. This suggests

>- that another procedure for detecting objects such as planes and rockets is
€ to measure in some way the extremal edges present in a scene and to look

for the target amongst those points of higher values. It may be possibleC3 that the information present in the gray level picture does not have any
l..l significant difference in gray level between the targjet and the background
.. but the target and the background may be of 4ifferent colors. In this
l case, we must look a the color information and e\tract the edges from the

color data before we begin to look for a target. -Whe problems of finding
Sextremal edges, finding curvatures along the boundary of objects, and

detecting color edges, at first sight appear unrelated. The formulation
of these problems in the framework of vector fields and the application of ?
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his theoretical model to data both from the range and from the laboratory
are the subjects of this paper.-

4he paper is divided into three parts. In the first section we
discuss extremal edges and their detection, section 2 discusses curvature
and its measure and section 3 formulates the detection of color edges in
vector field language and uses the theoretical results of sections I and
2 to detect color edges. Each section follows the same paradigm, namely:>

1. The problems is formulated as a problem in the theory of
vector fields)

2. The detection of a particular property is formulated as the
computation of an integral over a vector field, q,>

3.L The theoretical results are applied to data obtained from the
field or in the lab.-

'An outline of the mathematical methods are =6%!:Y contained 4f.
and are based' on classical vector analysis. Details of the

mathematics used appear ip a for supporting material on
differential geometry see for example [1) or [2). What we call the
rotation degree of a tor field is also called the topological degree of
the corresponding mapp ng from the unit circle to itself. Two books
treating topological deg ee theory are [3) and [4).

Section I.\ VECTOR FIELDS AND EXTREMAL EDGES

The two planes of figure I are typical of the tracking situations that-
occur at WSMR. To set these we started with the original video frames and
digitized the analog signal at the rate of 512 points per line. -he value
assigned to each point is between 0 and 255 and Is proportional to the
strength to the analog signal. In these two pictures, that are of very
low contrast, we have been able to segment the target by finding the
extremal edges arising from the shape of the fuselage and wings. In terms
of a function of two variables an extremal edge is a connected set of
extrema very similar to the top points of a roof. The classical develop-
m'ent of extrema via partial derivatives does not give a method for finding
these extrema. The standard treatment of critical points looks at the
nuadratic form ff -f 2 and at f using the Hessian
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Figure 1. (a) (c) Two planes as seen through a telescope. (b) (d)
extreqal edries of (a) and (c) seqment the planes from the
backaround.
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the conditions for an extrema are:

max: determinant (Hf) >0 and fii'O
min: determinant (Hf) >0 and fiiO
non-extrema: determinant (Hf) <O
cannot say: determinant (Hf) = 0

An example of a function about which nothing can be said from this
test is Z - X4 + Y4. It has a Hessian which vanishes at 0 and thus from
this test no conclusion can be made about the type of critical point at
(0, 0) even though it is obviously a minimum. The gradient field shows
that the function is increasing at every direction away from (0, 0) and so
the information as to the nature of the extrema is in the gradient field.

We can extract this information from the vector field by calculating
the integral for z=x 4 + Y4

n f do fL K 1

where (a) KMi " Hf(x,v- fix))

I f( 2

(b) Hf(, f()) = [D ilf D12f] (-02 f
1 D2-1  D22f J( \Df)

Ic) v f(i) - (-Df, Dlf)

and do is the de of (figure 2).

Figure 2. A portion of a vector field.



1ACHUCA

The fact that Z is an extrema at (0,0) Is reflected by its nonzero value
of n. But we are mainly interested in detecting extrema which are not
Isolated as in the case f=X2 . This function has the line x-O as the set
of its extrema. If we look at the Hessian it gives no information which
can be used to detect the extremal set: As before we must look at the
gradient field to find the extrema. The gradient field of the function as
before reveals the behavior of the function at x=O, namely it is Increas-
ing as we move away fr-m x-O, thus there is an extremal edge along the
line x-0. "

Figure 3. A small neighborhood of the gradient field for the
function z-x2 .

Because of the ambiguous do at Bl and 02 (figure 3) the analytical
detector of extrema edge points becomes somewhat complicated. The analogy
of isolated extrema is followed and we define the detector as an integral
along the places where it can be defined and where there is an ambiguity
we take de=w. Using the quantities defined at (a) and (b) the analytical
detector is

n= f Kdr +f Kdr + 01 + 02

This gives a function which is equal to zero at nonextremal edges and 1 at
extre.mal edges.

Once we have identified the extermal edges we want to distinguish
between weak and strong extremal edqes. In the one dimensional case
(figure 4) the quantity M(e) = I f'(a) I+ I f'(b) will distinguish between
sharply sloped roofs and weakly sloped roofs. The two dimensional
analogue of this Quantity is fy I f7j.

o b

Finure 4. Weak and strong extre ial edges.
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Figure 5. (a) Computer generated example, (b) edge points detected,
and (c) partial gradient field of (a) rotated 90 decirees.
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*Figure 6. (a) Dilgitized video frame of an F102, (h) areas of high
curvature, and (c) contour of (a) and its curvature.
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The computer application of these methods is done -by first
approximating the partials in a 3x3 neighborhood of a point and from this
computing the quantities do and Vf. A new file is created which
contains fylVfl when n=1 and 0 when n1 0.

In figure 5 we have several extremal edges of the type z=x 2 and
z=-x 2 . The darkest parts are like the extreme points z=+x z while the
brightest points are like the extrema Z=-X 2 . The edge points exhibited in
figure 5 have been found using the procedure described above. Figure 1
contains pictures of a plane taken through long distance optics. There is
very little contrast in both pictures between the plane and the back-
ground. However, the extremal edges which result from the wings and the
fuselage are very easily detected by the methods described above.

Section I1. CURVATURE

This concept of studying the gradient field to find properties of a
scene can be. used to find other features of a target. For example in
figure 6, the points of the original in which the contour has high
curvature have been found by looking at the gradient vector field.

The analytical tools used to detect curvature are the same as those
used in detecting extremal edges. With the definitions the same as (a),
(b), and (c) above, the pointwise curvature can be computed from the
Hessian and the gradient and is given by the formula

W) = - U Hf(IVf(M), Vf())

IVfj 3

Because of the amount of noise present in these scenes a better quantity
to compute is the average curvature:

1

A* (K,O)= f s W dr

To see that the quantity is a measure of curvature we look at the function
f(x,y)= x2 + y2 and compute A* for this function. If A* is computed over
a small circle centered at n as in figure 7,

Fiqure 7. Contour lines and test circle.

I. 8
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then if A* is a good measure of curvature it should be small when n is
1 arge and large when n i s smal 1. Using polar coordinates the poititwi se
curvature Is 1/r and with the circles parametrized by (nO) .+ e A*
becomes the integral

dt
IT (nz + 1 + Zn cost) 1/2

and this integral is a maximum for n=1 and decreases as n increases,
exactly what a good measure of curvature should do. Figure 8 contains two
scenes obtained from range missions. Figure 8 (a) is a rocket at
takeoff. The nose of the rocket has been identified as one of the points
of high curvature and is the brightest point of (b) closest to the top.
The points of high curvature generated by the plume are also indicated.
In figure 8 (c) there is a plane flying by a mountain. The points of high
curvature at the nose, wing, and tail have been detected. There are also
some others from the mountain edge. Thus, the gradient field reflects
many properties of the original scene. We can also look at other vector
fields generated by scenes and find other properties such as color edges.

Section II. COLOR EDGES

We are mainly interested in the analysis of color data in the case
where there is no gray level difference between the target and the
background, i.e., in the cases where the above methods fail. That is we
are looking for a method for finding edges in the case where the target
cannot be separated from the background by looking at the luminance
component of a scene but can be detected by using the chrominance
information. A widely used color representation that breaks up a color
into luminance and chrominance information is the (Y,I,Q) color
representation of standard video. In this representation Y is the
luminance component, which we ignore since our principal assumption is
that the target and background are similar in luminance. Thus we must
look at the I and Q components to detect the target from the background,
and in particular we are interested in edges caused by differences in hue
between target and background.

For any color(YI,Q) the vector v = (I,Q) has the property that the
angle it makes with the I - axis, !(v), specifies its hue (see figure 9)
while its absolute value gives the saturation.

Figure 9. The 1, 0 Coordinate System

I.J
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te assume that the saturation is the same for every color of an image
s is the case for the scenes we study) then the color information
lable to detect the target is all contained in O(v). In order to
ct the edges from this component, it is useful to consider the vector
d T = v/Iv1 and use the vector field formulation of section I to
ct edges due to hue.

An example of a vector field T so generated appears in figure 10. A
,ion of the vector field on a test circle, selected from near the
er of figure 10 is shown in figure 11.

20

Oi

3

4

Figure 11. A portion of a color edge.

Figure 11, we detect an edge between the two colors, Oi(blue) and
ellow), simply because the vectors point in opposite directions. Note
T rotates counterclockwise from 1 to 2 to 3, clockwise from 3 to 4 to
There are convexity changes at approximately "1" and "3". If the

le y is parametrized on [0,1) by y(t) = e2lit, then the argument
tion Oit) is simply 0 = Arg(v) at the point e i2 r t on the circle:

T t) = (cos(e(t)), sin((t)).

early, because if we use the integral as the color edge detector,

(ii) 19O, (t) ,dt =/ 01

lanore the change in convexity and measure net rotation. From
re 11 it is clear that

(iii) f Idd = 2 I -3z .

JY.
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(a)

Figure 12. The P, G, P comrponents of "airl picture"t (a), (b) (c)
and the huje edcaonts (di.
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The integral f1  do in (ii) can be interpreted as the average curvature
of the vector field T; e.g., as in (iii) for the curve y. Hence,
measuring net rotation corresponds to me:suring the average curvature of T
on y. We have found I, do to be a good color edge detector. In fact
the vector field shownJln figure 10 is generated by the leaf in the R,G,B
components shown in figure 12 a-b-c. The result of the average curvature
method - O do - is shown in figure 12.

An alternate approach to detecting color edges would be to follow the
classical development for gray level edges. That is compute abs(grad(R)),
abs(grad(G)), and abs(grad(B)) and combine these in some way to find the
color edges. This process requires that two convolutions take place for
each of the gradients (one for each partial derivative), and after the
gradients are computed there remains the problem of how to combine them
into one output.

The edge detection method described in this section is particularly
provocative because of its implications with regard to hardware
implementations of color edge detectors. The phase of the (I,Q) vector is
easily available from analog hardware and so the data input to this
algorithm is available in real time. The integration that takes place for
the edge detection is a type of "convolution" easily performed by state-
of-the-art real time hardware. Thus, with this method an implementation
can be constructed with components that are practically available off the
shelf, and such a machine is being built at White Sands Missile Range.

Conclusion. We have shown that a variety of image processing problems can
be stated in terms of vector field problems and that quantities easily
calculated in real time over the associated vector fields can be used to
detect image features. Extremal edges can be found by computing the
rotation number of a curve a via a simple process. Points of high average
curvature are found directly from the vector field, without approximate
surfaces or statistics. It was shown that the detection of hue edges
could be done by computing the rotation associated with the vector field
(1,0), a number that can easily be computed in real time by existing
hardware components.
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